Hoofdstuk 10 - Lineair programmeren

Meer dan twee variabelen

bladzijde 290

1a 8 banken, 28 stoelen en 17 tafels nemen evenveel plaats in als
8·2 + 28 + 17·2 = 16 + 28 + 34 = 78 stoelen. Dat is meer dan de maximale opslagcapaciteit van 70 stoelen, dus het is niet mogelijk.

b De aantallen geproduceerde banken, stoelen en tafels zijn natuurlijk niet negatief, dus $b \geq 0$, $s \geq 0$ en $t \geq 0$. De maximale aantallen per dag zijn respectievelijk 10, 30 en 20, dus $b \leq 10$, $s \leq 30$ en $t \leq 20$. Druk de benodigde opslagruimte uit in aantal stoelen: één tafel of één bank nemen evenveel ruimte in als twee stoelen, dus b banken en t tafels nemen evenveel ruimte in als $2b + 2t$ stoelen. Er is plaats voor 70 stoelen dus $2b + s + 2t \leq 70$.

2a $C(0, 30, 0); E(0, 0, 20); B(10, 30, 0)$ en $F(10, 0, 20)$.

b De coördinaten van H zijn $(0, 30, 20)$ dus dit punt hoort bij een productie van 0 banken, 30 stoelen en 20 tafels.

c Van G is bekend: $b = 10$ en $t = 20$.

Van D is bekend: $b = 10$ en $s = 30$.

d Vlak $ABDF$ is evenwijdig met de s-as en de t-as. Het punt $(10, 0, 0)$ ligt in dit vlak. Bij alle punten in dit vlak hoort dus een productie van 10 banken.

e Bij $BCHD$ hoort de vergelijking $s = 30$. Bij $EFGH$ hoort de vergelijking $t = 20$.

f Vul de coördinaten van G, D en H in bij de vergelijking $2b + s + 2t = 70$: $2\cdot 10 + 10 + 2\cdot 20 = 20 + 10 + 40 = 70$ $2\cdot 10 + 30 + 2\cdot 10 = 20 + 30 + 20 = 70$ $2\cdot 0 + 30 + 2\cdot 20 = 0 + 30 + 40 = 70$ Alle drie punten voldoen dus aan de vergelijking $2b + s + 2t = 70$. De vergelijking van het vlak GDH is dus $2b + s + 2t = 70$.

3a De winst per bank is 30 euro, dus op b banken $30b$ euro. Op s stoelen is de winst $10s$ euro en op t tafels $25t$ euro, dus $W = 30b + 10s + 25t$.

b Vul de coördinaten van alle hoekpunten in voor de functie W:

<table>
<thead>
<tr>
<th>punt</th>
<th>coördinaten</th>
<th>waarde van W</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>(0, 0, 0)</td>
<td>$30\cdot 0 + 10\cdot 0 + 25\cdot 0 = 0$</td>
</tr>
<tr>
<td>A</td>
<td>(10, 0, 0)</td>
<td>$30\cdot 10 + 10\cdot 0 + 25\cdot 0 = 300$</td>
</tr>
<tr>
<td>B</td>
<td>(10, 30, 0)</td>
<td>$30\cdot 10 + 10\cdot 30 + 25\cdot 0 = 600$</td>
</tr>
<tr>
<td>C</td>
<td>(0, 30, 0)</td>
<td>$30\cdot 0 + 10\cdot 30 + 25\cdot 0 = 300$</td>
</tr>
<tr>
<td>D</td>
<td>(10, 30, 10)</td>
<td>$30\cdot 10 + 10\cdot 30 + 25\cdot 10 = 850$</td>
</tr>
<tr>
<td>E</td>
<td>(0, 0, 20)</td>
<td>$30\cdot 0 + 10\cdot 0 + 25\cdot 20 = 500$</td>
</tr>
<tr>
<td>F</td>
<td>(10, 0, 20)</td>
<td>$30\cdot 10 + 10\cdot 0 + 25\cdot 20 = 800$</td>
</tr>
<tr>
<td>G</td>
<td>(10, 10, 20)</td>
<td>$30\cdot 10 + 10\cdot 10 + 25\cdot 20 = 900$</td>
</tr>
<tr>
<td>H</td>
<td>(0, 30, 20)</td>
<td>$30\cdot 0 + 10\cdot 30 + 25\cdot 20 = 800$</td>
</tr>
</tbody>
</table>

De hoogste winst is 900 euro. Deze winst wordt bereikt bij een productie van 10 banken, 10 stoelen en 20 tafels.
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

De winstfunctie wordt nu:
\[W = 30b + 20s + 25t \]. Bereken de waarde van \(W \) opnieuw voor alle hoekpunten:

<table>
<thead>
<tr>
<th>punt</th>
<th>coördinaten</th>
<th>waarde van (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>(0, 0, 0)</td>
<td>30 \cdot 0 + 20 \cdot 0 + 25 \cdot 0 = 0</td>
</tr>
<tr>
<td>(A)</td>
<td>(10, 0, 0)</td>
<td>30 \cdot 10 + 20 \cdot 0 + 25 \cdot 0 = 300</td>
</tr>
<tr>
<td>(B)</td>
<td>(10, 30, 0)</td>
<td>30 \cdot 10 + 20 \cdot 30 + 25 \cdot 0 = 900</td>
</tr>
<tr>
<td>(C)</td>
<td>(0, 30, 0)</td>
<td>30 \cdot 0 + 20 \cdot 30 + 25 \cdot 0 = 600</td>
</tr>
<tr>
<td>(D)</td>
<td>(10, 30, 10)</td>
<td>30 \cdot 10 + 20 \cdot 30 + 25 \cdot 10 = 1150</td>
</tr>
<tr>
<td>(E)</td>
<td>(0, 0, 20)</td>
<td>30 \cdot 0 + 20 \cdot 0 + 25 \cdot 20 = 500</td>
</tr>
<tr>
<td>(F)</td>
<td>(10, 0, 20)</td>
<td>30 \cdot 10 + 20 \cdot 0 + 25 \cdot 20 = 800</td>
</tr>
<tr>
<td>(G)</td>
<td>(10, 10, 20)</td>
<td>30 \cdot 10 + 20 \cdot 10 + 25 \cdot 20 = 1000</td>
</tr>
<tr>
<td>(H)</td>
<td>(0, 30, 20)</td>
<td>30 \cdot 0 + 20 \cdot 30 + 25 \cdot 20 = 1100</td>
</tr>
</tbody>
</table>

De grootste winst is nu 1150 euro. Deze winst wordt bereikt bij een productie van 10 banken, 30 stoelen en 10 tafels.

bladzijde 291

4a \(x \) en \(z \) hebben een positieve coëfficiënt en \(y \) heeft een negatieve coëfficiënt in \(W = 2x - y + 3z \). Voor een maximale waarde van \(W \) moeten \(x \) en \(z \) zo groot mogelijk en \(y \) zo klein mogelijk worden gekozen.

b In de doelfunctie \(T = 3x + y - 4z \) moeten \(x \) en \(y \) zo groot mogelijk en \(z \) zo klein mogelijk worden gekozen. De punten \(B \) en \(C \) komen daarom in aanmerking.

\(B \) geldt: \(T = 3 \cdot 50 + 50 - 4 \cdot 0 = 200 \).
\(C \) geldt: \(T = 3 \cdot 20 + 80 - 4 \cdot 0 = 140 \).
Het maximum voor \(T \) is dus 200.

c Voor het minimum moet je \(x \) en \(y \) zo klein mogelijk en \(z \) zo groot mogelijk kiezen. Dat is het geval in punt \(K \). Het minimum is \(T = 0 + 0 - 4 \cdot 60 = -240 \).

5a De winstfunctie is \(W = 24b = 12s = 24t \). Bereken de waarde van \(W \) opnieuw voor alle hoekpunten:

<table>
<thead>
<tr>
<th>punt</th>
<th>coördinaten</th>
<th>waarde van (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>(0, 0, 0)</td>
<td>24 \cdot 0 + 12 \cdot 0 + 24 \cdot 0 = 0</td>
</tr>
<tr>
<td>(A)</td>
<td>(10, 0, 0)</td>
<td>24 \cdot 10 + 12 \cdot 0 + 24 \cdot 0 = 240</td>
</tr>
<tr>
<td>(B)</td>
<td>(10, 30, 0)</td>
<td>24 \cdot 10 + 12 \cdot 30 + 24 \cdot 0 = 600</td>
</tr>
<tr>
<td>(C)</td>
<td>(0, 30, 0)</td>
<td>24 \cdot 0 + 12 \cdot 30 + 24 \cdot 0 = 360</td>
</tr>
<tr>
<td>(D)</td>
<td>(10, 30, 10)</td>
<td>24 \cdot 10 + 12 \cdot 30 + 24 \cdot 10 = 840</td>
</tr>
<tr>
<td>(E)</td>
<td>(0, 0, 20)</td>
<td>24 \cdot 0 + 12 \cdot 0 + 24 \cdot 20 = 480</td>
</tr>
<tr>
<td>(F)</td>
<td>(10, 0, 20)</td>
<td>24 \cdot 10 + 12 \cdot 0 + 24 \cdot 20 = 720</td>
</tr>
<tr>
<td>(G)</td>
<td>(10, 10, 20)</td>
<td>24 \cdot 10 + 12 \cdot 10 + 24 \cdot 20 = 840</td>
</tr>
<tr>
<td>(H)</td>
<td>(0, 30, 20)</td>
<td>24 \cdot 0 + 12 \cdot 30 + 24 \cdot 20 = 840</td>
</tr>
</tbody>
</table>

De maximale waarde wordt dus bereikt in de punten \(D \), \(G \) en \(H \) en in alle andere punten die binnen deze driehoek of op de zijden van deze driehoek liggen.

b Bijvoorbeeld het punt \((7, 20, 18) \). Dit punt voldoet aan de vergelijking
\[2b + s + 2r = 70 \] want \[2 \cdot 7 + 20 + 2 \cdot 18 = 14 + 20 + 36 = 70 \]

c De bijbehorende waarde van de doelfunctie is
\[W = 24 \cdot 7 + 12 \cdot 20 + 24 \cdot 18 = 168 + 240 + 432 = 840 \], de maximale waarde.
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

6a Deze voorwaarde hoort bij de beschikbare hoeveelheid merbau.

b De andere vier voorwaarden zijn:

\[a \leq 100 \, , \, b \leq 150 \, \text{en} \, c \leq 200 \] (de maximale aantallen per type)

\[6a + 3b + 6c \leq 1500 \] (vanwege de beschikbare hoeveelheid mahonie).

c Punt \(R \): \[2 \cdot 0 + 3 \cdot 100 + 4 \cdot 200 = 300 + 800 = 1100 \]

Punt \(S \): \[2 \cdot 0 + 3 \cdot 150 + 4 \cdot 162.5 = 450 + 650 = 1100 \]

Punt \(T \): \[2 \cdot 25 + 3 \cdot 150 + 4 \cdot 150 = 50 + 450 + 600 = 1100 \]

Dus de punten \(R, S \) en \(T \) voldoen alle drie aan de vergelijking.

d Bij \(PQRTU \) hoort de vergelijking \[6a + 3b + 6c = 1500 \]. Bij \(QRS \) hoort de vergelijking \(b = 150 \).

e De doelfunctie is \[Wa + 5b + 7c = 10 \, , \, 57 \].

f In punt \(B \) geldt: \[W = 10 \cdot 100 + 5 \cdot 150 + 7 \cdot 0 = 1000 + 750 + 0 = 1750 \]

In punt \(Q \) geldt: \[W = 10 \cdot 100 + 5 \cdot 150 + 7 \cdot 75 = 1000 + 750 + 525 = 2275 \]

In punt \(P \) geldt: \[W = 10 \cdot 100 + 5 \cdot 0 + 7 \cdot 150 = 1000 + 0 + 1050 = 2050 \]

In punt \(R \) geldt: \[W = 10 \cdot 25 + 5 \cdot 150 + 7 \cdot 150 = 250 + 750 + 1050 = 2050 \]

De maximale winst is 2275 euro. Dit wordt bereikt bij de productie van 100 kastjes van type A, 150 van type B en 75 van type C.

7a Het aantal kastjes van type C moet gelijk zijn aan het totaal van de types A en B, dus \[c = a + b \].

b \[a \geq 0 \, , \, b \geq 0 \, , \, c \geq 0 \, , \, a \leq 100 \, , \, b \leq 150 \] blijven ongewijzigd, \[c \leq 200 \] wordt \[a + b \leq 200 \].

\[6a + 3b + 6c \leq 1500 \] wordt \[6a + 3b + 6(a + b) \leq 1500 \] en daaruit volgt

\[6a + 3b + 6a + 6b \leq 1500 \], dus \[12a + 9b \leq 1500 \]. \(3p - 4r \geq 18 \)

c De doelfunctie wordt \[W = 10a + 5b + 7(a + b) = 10a + 5b + 7a + 7b = 17a + 12b \].

d Het toegestane gebied heeft vijf hoekpunten. Van drie hoekpunten zijn de co-ordinaten eenvoudig af te lezen: \(O(0, 0) \), \(A(100, 0) \) en \(E(0, 150) \). Punt \(B \) voldoet aan de vergelijkingen \[a = 100 \, , \, 12a + 9b = 1500 \]. Door invullen van \[a = 100 \] bij \[12a + 9b = 1500 \] krijg je \(1200 + 9b = 1500 \), dus \(9b = 300 \), waaruit volgt \(b = 33 \frac{1}{3} \).

Punt \(D \) voldoet aan \[b = 150 \] en \[6a + 7b = 1100 \], dus \[6a + 1050 = 1100 \], waaruit volgt \[6a = 50 \] en dus \[a = 8 \frac{1}{3} \].

Punt \(C \) voldoet aan \[12a + 9b = 1500 \] en \[6a + 7b = 1100 \]. Door de tweede vergelijking met twee te vermenigvuldigen en van de andere vergelijking af te trekken, vind je

\[12a + 14b = 2200 \, , \, 12a + 9b = 1500 \, \text{en} \, 5b = 700 \, \text{en dus} \, b = 140 \].

Vul dit in bij één van de twee vergelijkingen: \[6a + 7 \cdot 140 = 1100 \, , \, 6a = 1100 - 980 = 120 \, \text{en dus} \, a = 20 \].

Bereken de waarde van de doelfunctie \(W \) in de vijf hoekpunten:

In punt \(O \) geldt: \[W = 17 \cdot 0 + 12 \cdot 0 = 0 \]

In punt \(A \) geldt: \[W = 17 \cdot 100 = 1700 \]
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

In punt B geldt: \[W = 17 \cdot 100 + 12 \cdot 33 = 2096 \]
In punt C geldt: \[W = 17 \cdot 20 + 12 \cdot 140 = 2020 \]
In punt D geldt: \[W = 17 \cdot 8 + 12 \cdot 150 = 1936 \]
De winst is dus maximaal bij een productie van 100 kastjes type A, 33 van type B en 133 van type C.

8 De voorwaarden \(p \geq 0 \) en \(q \geq 0 \) blijven ongewijzigd.
\(r \geq 0 \) wordt \(q - 2p \geq 0 \) of \(q \geq 2p \).
\(p - 2q - 3r \geq 0 \) wordt \(p - 2q - 3(q - 2p) = p - 2q - 3q + 6p = 7p - 5q \geq 0 \).
wordt \(3p - 4(q - 2p) = 3p - 4q + 8p = 11p - 4q \geq 18 \).
De doelfunctie wordt \(W = 3p + 4q - 3(q - 2p) = 3p + 4q - 3q + 6p = 9p + q \).

9 De voorwaarden \(x \geq 0 \) en \(y \geq 0 \) blijven ongewijzigd.
\(z \geq 0 \) wordt \(10 - x - y \geq 0 \) of \(x + y \leq 10 \).
\(2x \geq y + z \) wordt \(2x \geq y + 10 - x - y = 10 - x \) dus \(3x \geq 10 \) of \(x \geq 3 \frac{1}{3} \).
\(3x + y - x \geq 6 \) wordt \(3x + y - (10 - x - y) = 3x + y + 10 - x + y = 4x + 2y - 10 \geq 6 \) waaruit volgt \(4x + 2y \geq 16 \).
\(TK = 400x + 150y - 30(10 - x - y) = 400x + 150y - 300 + 30x + 30y \). De doelfunctie wordt dus \(TK = 430x + 180y - 300 \).

10a Er moeten drie bedragen worden gekozen: \(x \) euro's voor opties, \(y \) euro's voor aandelen en \(z \) euro's voor obligaties. De voorwaarden zijn: \(x \geq 3000 \), \(y \geq 3000 \), \(z \geq 3000 \).
Verder moet gelden \(x \leq 2z \) en \(x + y + z = 30000 \).

b Uit \(x + y + z = 30000 \) volgt \(z = 30000 - x - y \). De voorwaarde \(z \geq 0 \)
wordt \(30000 - x - y \geq 0 \) of \(x + y \leq 30000 \). De voorwaarde \(x \leq 2z \) wordt
\(x \leq 2(30000 - x - y) = 60000 - 2x - 2y \) dus \(3x + 2y \leq 60000 \).

c De doelfunctie wordt:
\[R = 0,1x + 0,08y + 0,06z = 0,1x + 0,08y + 0,06(30000 - x - y) = 0,1x + 0,08y + 1800 - 0,06x - 0,06y = 0,04x + 0,02y + 1800 \]

Noem de hoekpunten van het toegestane gebied \(A, B, C \) en \(D \).
De coördinaten van punt \(A \) zijn \((3000, 3000) \).
Voor punt \(B \) geldt: \(y = 3000 \) en \(3x + 2y = 60000 \). Hieruit volgt \(3x + 2 \cdot 3000 = 6000, \) dus \(3x = 54000 \) en \(x = 18000 \) dus \(B(18000, 3000) \).
Voor punt \(C \) geldt: \(3x + 2y = 60000 \) en \(x + y = 27000 \).
Door de tweede vergelijking te verdubelen en van de eerste vergelijking af te trekken vind je \(x = 6000 \) waaruit volgt \(y = 21000 \). Dus \(C(6000, 21000) \).
Voor punt \(D \) geldt: \(x = 3000 \) en \(x + y = 27000 \), dus \(y = 24000 \) en dus \(D(3000, 24000) \).
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

Bereken nu de waarde van \(R \) in de vier hoekpunten:

In A geldt: \(R = 0,04 \cdot 3000 + 0,02 \cdot 3000 + 1800 = 1980 \)

In B geldt: \(R = 0,04 \cdot 1800 + 0,02 \cdot 3000 + 1800 = 2580 \)

In C geldt: \(R = 0,04 \cdot 6000 + 0,02 \cdot 21000 + 1800 = 2460 \)

In D geldt: \(R = 0,04 \cdot 3000 + 0,02 \cdot 24000 + 1800 = 2400 \)

Het hoogste rendement onder deze voorwaarden is 2580 euro.

e Het advies is: koop voor € 18000 aan opties, voor € 3000 aandelen en voor € 9000 obligaties.

Bladzijde 294

11a Uit de maximaal beschikbare ruimte volgen de voorwaarden \(k \leq 50 \) en \(s \leq 200 \). Uit de beschikbare oppervlakte aan weiland (in are) volgt: \(20k + 4s \leq 1400 \). Uit de beschikbare hoeveelheid arbeid volgt: \(150k + 20s \leq 9000 \).

b De hoekpunten van het toegestane gebied zijn \(O(0, 0) \), \(A(50, 0) \) en \(E(0, 200) \). Punt \(B \) wordt gevonden uit \(150k + 20s = 9000 \) en \(k = 50 \) dus \(150 \cdot 50 + 20s = 7500 + 20s = 9000 \) waaruit volgt \(20s = 1500 \), dus \(s = 75 \). De coördinaten van \(B \) zijn dus \((50, 75)\).

Voor \(D \) geldt: \(s = 200 \) en \(20k + 4s = 1400 \), dus \(20k + 800 = 1400 \) waaruit volgt \(20k = 600 \) dus \(k = 30 \) zodat \(D(30, 200) \).

Voor punt \(C \) geldt: \(150k + 20s = 9000 \) en \(20k + 4s = 1400 \). Vermenigvuldig de tweede vergelijking met vijf en trek het resultaat van de eerste vergelijking af:

\[
150k + 20s = 9000 \\
100k + 20s = 7000
\]

dus \(50k = 2000 \) en \(k = 40 \).

Door invullen vind je \(20 \cdot 40 + 4s = 1400 \) dus \(4s = 1400 - 800 = 600 \) en daaruit volgt \(s = 150 \). De coördinaten van \(C \) zijn \((40, 150)\).

Voor maximale winst moeten \(k \) en \(s \) zo groot mogelijk worden gekozen.

In punt \(C \) geldt: \(W = 1000 \cdot 40 + 150 \cdot 180 = 67000 \).

In punt \(B \) geldt: \(W = 1000 \cdot 50 + 150 \cdot 75 = 63500 \).

In punt \(D \) geldt: \(W = 1000 \cdot 30 + 150 \cdot 200 = 66000 \).

Dus maximale winst als er 40 koeien en 150 schapen zijn.

12a Vlak \(ABGH \) hoort bij de vergelijking \(x = 30 \).

b Punt \(E \) ligt in de vlakken \(OAGED \), \(DEF \) en \(EGHF \). De vergelijkingen van deze drie vlakken zijn \(y = 0 \), \(z = 85 \) en \(8x + 5y + 4z = 400 \). Door \(y \) en \(z \) in te vullen volgt \(8x + 4 \cdot 85 = 400 \), dus \(8x = 400 - 340 = 60 \) en \(x = 7 \frac{1}{2} \).

De coördinaten van \(E \) zijn \((7 \frac{1}{2}, 0, 85)\).

c Van enkele punten zijn de coördinaten direct af te lezen: \(O(0,0,0) \), \(A(30,0,0) \), \(C(0,20,0) \) en \(D(0,0,85) \).
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

Voor punt B geldt: \(x = 30 \), \(y = 20 \) en \(z = 0 \) dus \(B(30, 20, 0) \).
Voor punt \(F \) geldt: \(x = 0 \), \(z = 85 \) en \(8x + 5y + 4z = 400 \), daaruit volgt
\(0 + 5y + 4 \cdot 85 = 400 \) dus \(K = 12 \cdot 20 = 240 \) en \(y = 12 \) zodat \(F(0, 12, 85) \).
Voor punt \(G \) geldt: \(y = 0 \), \(x = 30 \) en \(8x + 5y + 4z = 400 \), daaruit volgt
\(8 \cdot 30 + 0 + 4z = 400 \) dus \(4z = 160 \) en \(z = 40 \) zodat \(G(30, 0, 40) \).
Voor punt \(H \) geldt: \(x = 30 \), \(y = 20 \) en \(8x + 5y + 4z = 400 \), daaruit volgt
\(8 \cdot 30 + 5 \cdot 20 + 4z = 400 \) dus \(4z = 60 \) en \(z = 15 \) zodat \(H(30, 20, 15) \).

Voor punt \(I \) geldt: \(x = 0 \), \(y = 20 \) en \(8x + 5y + 4z = 400 \), daaruit volgt
\(0 + 5 \cdot 20 + 4z = 400 \) dus \(4z = 300 \) en \(z = 75 \) zodat \(I(0, 20, 75) \).

Voor een maximum van de functie \(K = -x + 12y - 3z \) moet \(y \) zo groot mogelijk en moeten \(x \) en \(z \) zo klein mogelijk worden gekozen. Het maximum wordt daarom bereikt in punt \(C \). Het maximum is \(K = 12 \cdot 20 \cdot 240 \).

13a Uit \(2x - y - z = 0 \) volgt \(z = 2x - y \).
De voorwaarden \(x \geq 0 \), \(y \geq 0 \), \(x \leq 30 \) en \(y \leq 20 \) blijven onveranderd.
\(z \geq 0 \) wordt \(2x - y \geq 0 \).
\(z \leq 85 \) wordt \(2x - y \leq 85 \).
\(8x + 5y + 4z \leq 400 \) wordt \(8x + 5y + 4(2x - y) \leq 400 \), hieruit volgt \(8x + 5y + 8x - 4y \leq 400 \), dus \(16x + y \leq 400 \).
De doelfunctie wordt \(W = -x + 12y - 3(2x - y) = -x + 12y - 6x + 3y = -7x + 15y \).

b

\[y \]
\[x \]

\[z \]

De waarde van de doelfunctie in de vier hoekpunten is:
\(O: W = 0 \)
\(A: W = -175 \)
\(B: W = 133, 75 \)
\(C: W = 230 \)

De maximale waarde 230 van \(W \) wordt bereikt in punt \(C(10, 20) \).

14a De winst in dat geval is gelijk aan \(5 \cdot 60 + 70 + 5 \cdot 0 \cdot 5 + 12 \cdot 50 \cdot 90 = 90000 \) dus € 90000.

b gewas	benodigde arbeid	beschikbare arbeid
aardappelen | 5 \cdot 12 = 60 | 2 \cdot 8.5 = 80
erwten | 5 \cdot 15 = 75 | 2 \cdot 8.5 = 80
graan | 12 \cdot 10 = 120 | 3 \cdot 8.5 = 120

Moderne wiskunde 9e editie vwo A/C deel 2 © Noordhoff Uitgevers bv
Bij deze verdeling kan er dus op tijd worden geoogst.

c De voorwaarden zijn:
\[a \geq 0, \quad e \geq 0, \quad g \geq 0 \quad \text{en} \quad a + e + g \leq 22. \]
De doelfunctie is \(W = 60 \cdot 70 \cdot a + 40 \cdot 75 \cdot e + 50 \cdot 90 \cdot g \), dus \(W = 4200a + 3000e + 4500g \).
d De beperkende voorwaarden zijn:
\[12a \leq 80, \quad 15e \leq 80 \quad \text{en} \quad 10g \leq 20. \]
e Op de helft van de beschikbare grond wordt graan verbouwd, dus \(g = 11 \).
De voorwaarden worden nu: \(a \geq 0, \quad e \geq 0, \quad a + e \leq 11, \quad 12a \leq 80 \) en \(15e \leq 80 \).
\[10g \leq 120 \] wordt nu \(10 \cdot 11 \leq 120 \); aan deze voorwaarde is voldaan.
f De voorwaarden leveren het onderstaande toegestane gebied op:

![Graph of the feasible region]

De doelfunctie wordt \(W = 4200a + 3000e + 4500 \cdot 11 = 4200a + 3000e + 49500 \).
In hoekpunt \(O(0, 0) \) geldt: \(W = 49500 \)
In hoekpunt \(A(6 \frac{1}{2}, 0) \) geldt: \(W = 4200 \cdot 6 \frac{1}{2} + 49500 = 77500 \).
Hoekpunt \(B \) voldoet aan \(a = 6 \frac{1}{2} \) en \(a + e = 11 \), dus \(e = 4 \frac{1}{2} \).
In dit punt geldt: \(W = 4200 \cdot 6 \frac{1}{2} + 300 \cdot 4 \frac{1}{2} + 49500 = 90500 \).
Hoekpunt \(C \) voldoet aan \(e = 5 \frac{1}{2} \) en \(a + e = 11 \), dus \(a = 5 \frac{1}{2} \).
In dit punt geldt: \(W = 4200 \cdot 5 \frac{1}{2} + 300 \cdot 5 \frac{1}{2} + 49500 = 89300 \)
De winst is dus het grootst als er \(6 \frac{1}{2} \) ha aardappelen, \(4 \frac{1}{2} \) ha erwten en \(11 \) ha graan wordt verbouwd.
g Tijdens de aardappeloogst is \(12 \cdot 6 \frac{1}{2} = 80 \) uur arbeid nodig.
Tijdens de erwtenoogst is \(15 \cdot 4 \frac{1}{2} = 65 \) uur arbeid nodig.
Tijdens de graanoogst is \(10 \cdot 11 = 110 \) uur arbeid nodig.
Tijdens de erwtenoogst is nog 15 uur en tijdens de graanoogst is nog 10 uur beschikbaar voor ander werk.

15a Er moeten zes getallen worden gekozen: de aantallen auto's van Amsterdam naar Assen, naar Utrecht en naar Eindhoven en de aantallen auto's van Rotterdam naar Assen, naar Utrecht en naar Eindhoven.
Er zijn dus zes beslissingsvariabelen.
Noem deze variabelen respectievelijk \(a_1, a_2, a_3, r_1, r_2 \) en \(r_3 \).
b De voorwaarden zijn:
\[a_1 + a_2 + a_3 + r_1 + r_2 + r_3 = 1800 \]
\[a_1 + r_1 = \frac{1}{2}(a_1 + r_1 + a_2 + r_2) = \frac{1}{2}(a_1 + r_1 + 2a_2 + 2r_2) = 1 \frac{1}{2}(a_1 + r_1) \]
c De doelfunctie is
\[TK = 70a_1 + 40a_2 + 65a_3 + 85r_1 + 50r_2 + 65r_3 + 25(a_1 + a_2 + a_3) + 20(r_1 + r_2 + r_3) \]
\[= 95a_1 + 65a_2 + 90a_3 + 105r_1 + 70r_2 + 85r_3 \]
d De minimale transportkosten zijn \(95 \cdot 400 + 65 \cdot 800 + 85 \cdot 600 = 141 000 \) euro.
16a In totaal moeten er 60 toestellen naar Zwolle. Als er \(x \) toestellen uit Emmen komen, moeten er nog \(60 - x \) toestellen uit Amersfoort bij. Op dezelfde manier komen er \(50 - y \) toestellen uit Amersfoort naar Deventer en \(70 - z \) toestellen uit Amersfoort naar Lelystad.

b In Emmen, Deventer en Lelystad zijn in totaal 180 toestellen nodig. Er zijn in Emmen en Amersfoort in totaal 180 toestellen aanwezig, dus er blijven geen toestellen over. Daarom geldt \(x + y + z = 180 \) dus \(z = 90 - x - y \).

c Dat aantal is \(70 - z = 70 - (90 - x - y) = 70 - 90 + x + y = x + y - 20 \).

d Voor de transportkosten geldt:
\[
TK = 5x + 5y + 6(90 - x - y) + 6(60 - x) + 4,5(50 - y) + 5(x + y - 20)
\]
\[
= 5x + 5y + 540 - 6x - 6y + 360 - 6x + 225 - 4,5y + 5x + 5y - 100
\]
\[
= 1025 - 2x - 0,5y
\]

e De ongelijkheden zijn:
\[
x \geq 0 \quad \text{en} \quad y \geq 0
\]
\[
90 - x - y \geq 0 \quad \text{dus} \quad x + y \leq 90
\]
\[
60 - x \geq 0 \quad \text{dus} \quad x \leq 60
\]
\[
50 - y \geq 0 \quad \text{dus} \quad y \leq 50
\]
\[
x + y - 20 \geq 0 \quad \text{dus} \quad x + y \geq 20
\]

De hoekpunten en de bijbehorende waarde van TK worden als volgt gevonden:
\[
y = 0 \quad \text{en} \quad x + y = 20 \quad A(20, 0) \quad TK = 1025 - 2 \cdot 20 = 985
\]
\[
y = 0 \quad \text{en} \quad x = 60 \quad B(60, 0) \quad TK = 1025 - 2 \cdot 60 = 905
\]
\[
x = 60 \quad \text{en} \quad x + y = 90 \quad C(60, 30) \quad TK = 1025 - 2 \cdot 60 - 0,5 \cdot 30 = 890
\]
\[
y = 50 \quad \text{en} \quad x + y = 90 \quad D(40, 50) \quad TK = 1025 - 2 \cdot 40 - 0,5 \cdot 50 = 920
\]
\[
y = 50 \quad \text{en} \quad x = 0 \quad E(0, 50) \quad TK = 1025 - 0,5 \cdot 50 = 1000
\]
\[
x = 0 \quad \text{en} \quad x + y = 20 \quad F(0, 20) \quad TK = 1025 - 0,5 \cdot 20 = 1015
\]
Het minimum is gelijk aan 890 euro.

g De beste verdeling is dus: vanuit Emmen 60 toestellen naar Zwolle en 30 naar Deventer, uit Amersfoort 20 toestellen naar Deventer en 70 toestellen naar Lelystad.

17a
De handelaar heeft 20 + 36 + 34 = 90 wagonladingen verkocht en hij heeft 50 + 40 = 90 wagonladingen beschikbaar. Alle voorraad in Omaha is dus nodig. Daarom geldt \(x + y + z = 50\) dus \(z = 50 - x - y\).

Alles kan worden uitgedrukt in twee variabelen: \(x\) en \(y\). De hoeveelheid die vervoerd wordt van Chicago naar New York kan worden geschreven als:

\[
34 - x - y = 34 - 50 + x + y = x + y - 16.
\]

de doelfunctie is:

\[
TK = 42x + 55y + 60(50 - x - y) + 36(20 - x) + 47(36 - y) + 51(x + y - 16)
\]

\[
= 42x + 55y + 3000 - 60x - 60y + 720 - 36x + 1692 - 47y + 51x + 51y - 816
\]

\[
= 4596 - 3x - y.
\]

de ongelijkheden zijn:

\[
x \geq 0\quad\text{en}\quad y \geq 0
\]

\[
50 - x - y \geq 0\quad\text{dus}\quad x + y \leq 50
\]

\[
20 - x \geq 0\quad\text{dus}\quad x \leq 20
\]

\[
36 - y \geq 0\quad\text{dus}\quad y \leq 36
\]

\[
x + y - 16 \geq 0\quad\text{dus}\quad x + y \geq 16
\]

De hoekpunten en de bijbehorende waarden van \(TK\) worden als volgt gevonden:

\[
y = 0\quad\text{en}\quad x + y = 16\quad A(16, 0)\quad TK = 4596 - 3 \cdot 16 = 4548
\]

\[
y = 0\quad\text{en}\quad x = 20\quad B(20, 0)\quad TK = 4596 - 3 \cdot 20 = 4536
\]

\[
x = 20\quad\text{en}\quad x + y = 50\quad C(20, 30)\quad TK = 4596 - 3 \cdot 20 - 30 = 4506
\]

\[
y = 36\quad\text{en}\quad x + y = 50\quad D(14, 36)\quad TK = 4596 - 3 \cdot 14 - 36 = 4518
\]

\[
y = 36\quad\text{en}\quad x = 0\quad E(0, 36)\quad TK = 4596 - 36 = 4560
\]

\[
x = 0\quad\text{en}\quad x + y = 16\quad F(0, 16)\quad TK = 4596 - 16 = 4580
\]

Het minimum is dus gelijk aan 4506 dollar. De beste verdeling is: vanuit Omaha 20 wagonladingen naar Denver en 30 naar Miami en vanuit Chicago 6 wagonladingen naar Miami en 34 naar New York.

bladzijde 297

<table>
<thead>
<tr>
<th>18a</th>
<th>naaizwolle</th>
<th>Deventer</th>
<th>Lelystad</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanuit</td>
<td>Emmen</td>
<td>x</td>
<td>50 - y</td>
</tr>
<tr>
<td>Amersfoort</td>
<td>60 - x</td>
<td>y</td>
<td>90 - (60 - x) - y = 30 + x - y</td>
</tr>
</tbody>
</table>

De voorwaarden:

\[
x \geq 0\quad\text{en}\quad y \geq 0
\]

\[
60 - x \geq 0\quad\text{dus}\quad x \leq 60
\]

\[
50 - y \geq 0\quad\text{dus}\quad y \leq 50
\]

\[
40 - x + y \geq 0\quad\text{dus}\quad x - y \leq 40
\]

\[
30 + x - y \geq 0\quad\text{dus}\quad x - y \geq -30
\]

Voor de transportkosten geldt:

\[
TK = 5x + 5(50 - y) + 6(40 - x + y) + 6(60 - x) + 4,5y + 5(30 + x - y)
\]

\[
= 5x + 250 - 5y + 240 - 6x + 6y + 360 - 6x + 4,5y + 150 + 5x - 5y
\]

\[
= 1000 - 2x + 0,5y
\]

Moderne wiskunde 9e editie vwo A/C deel 2 © Noordhoff Uitgevers bv
Het toegestane gebied:

De hoekpunten en de bijbehorende waarde van TK zijn:

- $x = 0$ en $y = 0$ \(O(0, 0) \) \(TK = 1000 \)
- $y = 0$ en $x - y = 40$ \(A(40, 0) \) \(TK = 1000 - 2 \cdot 40 = 960 \)
- $x - y = 40$ en $x = 60$ \(B(60, 20) \) \(TK = 1000 - 2 \cdot 60 + 0,5 \cdot 20 = 890 \)
- $y = 50$ en $x - y = -30$ \(D(20, 50) \) \(TK = 1000 - 2 \cdot 20 + 0,5 \cdot 50 = 985 \)
- $y = 0$ en $x - y = -30$ \(E(0, 30) \) \(TK = 1000 + 0,5 \cdot 30 = 1015 \)

Het minimum is gelijk aan 890 euro. De beste verdeling is: vanuit Emmen 60 toestellen naar Zwolle en 30 naar Deventer en vanuit Amersfoort 20 toestellen naar Deventer en 70 toestellen naar Lelystad.

b In de doelfunctie van opdracht 16 verandert het getal 5 voor de eerste x:

$$TK = 2x + 5y + 6(90 - x - y) + 6(60 - x) + 4,5(50 - y) + 5(x + y - 20)$$
$$= 6x + 5y + 540 - 6x - 6y + 360 - 6x + 225 - 4,5y + 5x + 5y - 100$$
$$= 1025 - x - 0,5y$$

Bereken opnieuw de waarde van TK in de zes hoekpunten:

- $A(20, 0) \quad TK = 1025 - 20 = 1005$
- $B(60, 0) \quad TK = 1025 - 60 = 965$
- $C(60, 30) \quad TK = 1025 - 60 - 0,5 \cdot 30 = 950$
- $D(40, 50) \quad TK = 1025 - 40 - 0,5 \cdot 50 = 960$
- $E(0, 50) \quad TK = 1025 - 0,5 \cdot 50 = 1000$
- $F(0, 20) \quad TK = 1025 - 0,5 \cdot 20 = 1015$

Het transport zal op dezelfde manier worden geregeld, maar de kosten zijn nu 950 euro.

19a

<table>
<thead>
<tr>
<th></th>
<th>Ha</th>
<th>Nm</th>
<th>Bu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>28</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Ne</td>
<td>22</td>
<td>38</td>
<td>42</td>
</tr>
</tbody>
</table>

b De totale voorraad in Nederland en België is groter dan de hoeveelheden die in Hasselt, Nieuw-Millingen en Burgum nodig zijn. Daarom kunnen de hoeveelheden vanuit België naar de drie vestigingen worden aangeduid met x, y en z. In dit geval kan z niet worden uitgedrukt in x en y.

c De hoeveelheden vanuit België en Nederland naar de drie vestigingen zijn:

<table>
<thead>
<tr>
<th></th>
<th>Ha</th>
<th>Nm</th>
<th>Bu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>Ne</td>
<td>1250 – x</td>
<td>500 – y</td>
<td>750 – z</td>
</tr>
</tbody>
</table>

Doelfunctie:

$$TK = 28x + 36y + 42z + 22(1250 - x) + 38(500 - y) + 42(750 - z)$$
$$= 28x + 36y + 42z + 27500 - 22x + 19000 - 38y + 31500 - 42z$$
$$= 6x - 2y + 78000$$

Moderne wiskunde 9e editie vwo A/C deel 2 © Noordhoff Uitgevers bv
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

d De voorwaarden zijn:
\[x \geq 0, \quad y \geq 0 \quad \text{en} \quad z \geq 0 \]
\[1250 - x \geq 0 \quad \text{dus} \quad x \leq 1250 \]
\[500 - y \geq 0 \quad \text{dus} \quad y \leq 500 \]
\[750 - z \geq 0 \quad \text{dus} \quad z \leq 750 \]
\[x + y + z \leq 1175 \]
\[1250 - x + 500 - y + 750 - z \leq 1800 \quad \text{dus} \quad x + y + z \geq 700 \]
e De transportkosten zijn:
\[TK = 0 \cdot 28 + 500 \cdot 36 + 675 \cdot 42 + 22 \cdot 1250 + 38 \cdot 0 + 75 \cdot 42 = 77000 \quad \text{dus} \quad 77000 \quad \text{euro.} \]
f Nu is voor de drie vestigingen 1250 + 500 + 1225 = 2975 ton nodig. Dat is gelijk aan de voorraad in België en Nederland samen, dus moet gelden \(x + y + z = 1175 \) en is \(z = 1175 - x - y \) zodat er nu nog maar twee beslissingsvariabelen zijn.

b Noem de aantallen wagens van Rotterdam, Antwerpen en Hamburg naar Lyon respectievelijk \(x \), \(y \) en \(z \).

<table>
<thead>
<tr>
<th></th>
<th>Rotterdam</th>
<th>Antwerpen</th>
<th>Hamburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyon</td>
<td>(x)</td>
<td>(y)</td>
<td>(z = 24 - x - y)</td>
</tr>
<tr>
<td>München</td>
<td>(18 - x)</td>
<td>(15 - y)</td>
<td>(12 - z = 12 - (24 - x - y) = x + y - 12)</td>
</tr>
</tbody>
</table>

\[x \geq 0 \quad \text{en} \quad y \geq 0 \]
\[18 - x \geq 0 \quad \text{dus} \quad x \leq 18 \quad \text{en} \quad 15 - y \geq 0 \quad \text{dus} \quad y \leq 15 \]
\[24 - x - y \geq 0 \quad \text{dus} \quad x + y \leq 24 \]
\[x + y - 12 \geq 0 \quad \text{dus} \quad x + y \geq 12 \]

De doelfunctie wordt:
\[TK = 860x + 810y + 1250(24 - x - y) + 830(18 - x) + 875(15 - y) + 1010(x + y - 12) \]
\[= 860x + 810y + 30000 - 1250x - 1250y + 14940 - 830x + 13125 - 875y + 1010x + 1010y - 12120 \]
\[= 45945 - 210x - 305y \]

c De hoekpunten en de bijbehorende waarde van \(TK \) zijn:
\[y = 0 \quad \text{en} \quad x + y = 12 \quad A(12, 0) \quad TK = 45945 - 210 \cdot 12 = 43425 \]
\[y = 0 \quad \text{en} \quad x = 18 \quad B(18, 0) \quad TK = 45945 - 210 \cdot 18 = 42165 \]
\[x = 18 \quad \text{en} \quad x + y = 24 \quad C(18, 6) \quad TK = 45945 - 210 \cdot 18 - 305 \cdot 6 = 40335 \]
\[y = 15 \quad \text{en} \quad x + y = 24 \quad D(9, 15) \quad TK = 45945 - 210 \cdot 9 - 305 \cdot 15 = 39480 \]
\[y = 15 \quad \text{en} \quad x = 0 \quad E(0, 15) \quad TK = 45945 - 305 \cdot 15 = 41370 \]
\[x = 0 \quad \text{en} \quad x + y = 12 \quad F(0, 12) \quad TK = 45945 - 305 \cdot 12 = 42285 \]

De minimale vervoerskosten zijn 39480 euro.
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

Het vervoerschema bij deze minimale kosten is:

<table>
<thead>
<tr>
<th></th>
<th>Rotterdam</th>
<th>Antwerpen</th>
<th>Hamburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyon</td>
<td>9</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>München</td>
<td>9</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

bleadzijde 298

21a Neem aan dat per persoon r koppen rijst en s koppen soja wordt verstrekt. De voorwaarden zijn:

- $r \geq 0$ en $s \geq 0$
- $3360r + 1120s \geq 6720$ of $3r + s \geq 6$
- $15r + 20s \geq 90$ of $3r + 4s \geq 18$
- $0,1r + 0,3s \geq 0,9$ of $r + 3s \geq 9$

b De doelfunctie is $K = 0,7r + 0,5s$.

- Punt A wordt berekend uit $3r + s = 6$ en $3r + 4s = 18$.
- Vergelijkingen herschrijven: $s = 6 - 3r$ en $s = 4,5 - 0,75r$.
- Gelijkstellen: $6 - 3r = 4,5 - 0,75r$ geeft $-2,25r = -1,5$ en dus $r = \frac{2}{3}$.
- Invullen bij $s = 6 - 3r$ levert $s = 4$.
- Voor dit punt geldt $K = 0,7 \cdot \frac{2}{3} + 0,5 \cdot 4 = 2,467$.

- Punt B wordt berekend uit $r + 3s = 9$ en $3r + 4s = 18$
- Herschrijven: $r = 9 - 3s$ en $r = 6 - \frac{1}{3}s$.
- Gelijkstellen: $9 - 3s = 6 - \frac{1}{3}s$ geeft $-1,5s = -3$ en dus $s = 1,8$.
- Invullen in $r = 9 - 3s$ levert $r = 3,6$.
- Voor dit punt geldt: $K = 0,7 \cdot 3,6 + 0,5 \cdot 1,8 = 3,06$.
- In het punt $C(0, 6)$ zijn de kosten $K = 0,5 \cdot 6 = 3$ en in het punt $D(9, 0)$ geldt: $K = 0,7 \cdot 9 = 6,3$.
- De kosten zijn dus minimaal in het punt $A(\frac{2}{3}, 4)$.

c De hoeveelheid vitamine B2 is gelijk aan $0,1 \cdot \frac{2}{3} + 0,3 \cdot 4 = 1,267$ mg, dus dat is $1,267 - 0,9 = 0,367$ mg meer dan nodig is.

22a De samenstelling is 0,66667 kop rijst en 4 koppen soja.

b Een mogelijk oplossing is (een kwestie van proberen): een kop rijst kost 40 cent en een kop soja kost 100 cent. Het minimum wordt nu bereikt in het punt $(3,6; 1,8)$.

c $3360 \cdot 3,6 + 1120 - 1,8 = 14112$
- $15 \cdot 3,6 + 20 - 1,8 = 90$
- $0,1 \cdot 3,6 + 0,3 \cdot 1,8 = 0,9$

Bij energie blijkt nu een overschot te zijn, namelijk $14112 - 6720 = 7392$ kilojoules.

23a De doelfunctie is $K = 95a + 65b + 90c + 10d + 70e + 85f$.

Voorwaarden:
- $a = b + c + d + e + f = 1800$
- $b = -2(a + d)$
- $c = -0,5(a + b + d + e)$

Bij energie blijkt nu een overschot te zijn, namelijk $14112 - 6720 = 7392$ kilojoules.
De beste verdeling volgens de computer is: vanuit Amsterdam 400 auto’s naar Assen en 800 auto’s naar Utrecht en vanuit Rotterdam 600 auto’s naar Eindhoven.

b Een mogelijke keuze is: maak de vervoerskosten van Rotterdam naar Assen meer dan 10 euro goedkoper. Dit geeft het volgende resultaat.

Er gaan nu 400 auto’s van Rotterdam naar Assen.

\[\text{Doelfunctie}\]

\[
\begin{align*}
\text{Totale kosten} = 95a + 65b + 90c + 90d + 70e + 85f
\end{align*}
\]

\[\text{Voorwaarden}\]

\[
\begin{align*}
\text{(voorraad)} & : a + b + c + d + e + f = 1800 \\
\text{(Ass/Urrecht)} & : b + e = 2(a + d) \\
\text{(Eindhoven)} & : c + f = 0.5(a + b + d + e)
\end{align*}
\]

\[\text{Conclusie}\]

De maximaliseerde waarde van de doelfunctie is: $19000,00$

\[\text{Variabele} \quad \text{Waarde} \quad \text{Geedgeureerde kosten}\]

\[
\begin{align*}
a & : 0.00000 \quad 1.00000 \\
b & : 80.00010 \quad 0.00000 \\
c & : 400.00000 \quad 0.00000 \\
d & : 0.00000 \quad 0.00000 \\
e & : 600.00000 \quad 0.00000 \\
f & : 0.00000 \quad 0.00000
\end{align*}
\]

\[\text{bladzijde 299}\]

24a Kies als variabelen sa en ka (aantal ha suikerbieten en katoen bij A) en sb en kb (aantal ha suikerbieten en katoen bij B). De voorwaarden zijn:

\[
\begin{align*}
sa + ka & \leq 150 \\
sb + kb & \leq 225 \\
sa + sb & \leq 200 \\
ka + kb & \leq 190 \\
3sa + 2ka & \leq 250 \\
3sb + 2kb & \leq 300
\end{align*}
\]

De doelfunctie is: $B = 950sa + 950sb + 700ka + 700kb$

\[\text{Doelfunctie}\]

\[
\begin{align*}
\text{Optbrengst} = 950sa + 950sb + 700ka + 700kb
\end{align*}
\]

\[\text{Voorwaarden}\]

\[
\begin{align*}
\text{(grond A)} & : sa + ka = 150 \\
\text{(grond B)} & : sb + kb = 200 \\
\text{(totaal suikerbieten)} & : sa + sb = 200 \\
\text{(totaal katoen)} & : ka + kb = 190 \\
\text{(water A)} & : 3sa + 2ka = 250 \\
\text{(water B)} & : 3sb + 2kb = 300
\end{align*}
\]

De oplossing is dus; kibbutz A verbouwt 125 ha katoen en kibbutz B verbouwt 65 ha katoen en 56.7 ha suikerbieten.

b Kibbutz B zal niet tevreden zijn, want bij hen blijft $225 - 65 - 56.7 = 103.3$ ha ongebruikt, terwijl bij kibbutz A slechts 25 ha onbenut blijft.
25a Het grondgebied van B is 1,5 maal zo groot als dat van A, dus moet het gebruikte deel bij B, dat is dus $sb + kb$, ook 1,5 maal zo groot zijn als $sa + ka$, dat is het gebruikte deel bij A.

b De oplossing is nu: kibbutz A verbouwt 46 ha katoen en 52,7 ha suikerbieten en kibbutz B verbouwt 144 ha katoen en 4 ha suikerbieten.

c Als er 50 miljoen liter water wordt ingekocht verandert bij voorwaarde 6 het getal 300 in 350. In de doelfunctie moeten de kosten van het water worden afgetrokken: $250 \cdot 50 = 12500$ dollar.

De totale opbrengst is groter geworden. De gevolgen zijn:
Zonder de koop van het water waren de inkomsten:
Kibbutz A: $5267\times 950 + 46\times 700 \approx 82236$ dollar.
Kibbutz B: $4950\times 144 + 700 \times 104600$ dollar.
Met de aankoop van het water worden deze bedragen:
Kibbutz A: $3933\times 950 + 66\times 700 \approx 83564$ dollar.
Kibbutz B: $124950 + 34\times 700 = 141600$ dollar.
Het is dus voor B een goed besluit om het water te kopen.

bladzijde 300

26a 20 % van kwaliteit 1 en 30% van kwaliteit 2, dus ook 50% van kwaliteit 3. De prijs wordt dan $0,20 \times 57 + 0,30 \times 51 + 0,50 \times 46 = 49,7$ euro per ton. Het kopergehalte is $0,20 \times 33 + 0,30 \times 45 + 0,50 \times 90 = 65,1$ gram per ton, dus het voldoet niet aan de milieueis.

b Stel er is a % van kwaliteit 1, b % van kwaliteit 2, dus $100 - a - b$ % van kwaliteit 3. De voorwaarden zijn: $a \geq 0$ en $b \geq 0$
De eisen van de percentages worden:

\[
100 - a - b \geq 0 \quad \text{dus} \quad a + b \leq 100
\]

\[
\frac{a}{100} \cdot 57 + \frac{b}{100} \cdot 51 + \frac{100-a-b}{100} \cdot 46 \leq 50 \quad \text{dus} \quad 0,57a + 0,51b + 46 - 0,46a - 0,46b \leq 50,
\]

waaruit volgt \(0,11a + 0,05b \leq 4\) of \(11a + 5b \leq 400\).

\[
\frac{a}{100} \cdot 33 + \frac{b}{100} \cdot 45 + \frac{100-a-b}{100} \cdot 90 \leq 60 \quad \text{dus} \quad 0,33a + 0,45b + 90 - 0,9a - 0,9b \leq 60,
\]

waaruit volgt \(-0,57a - 0,45b \leq -30\) of \(19a + 15b \geq 1000\).

Het doel is om zo weinig mogelijk van de kwaliteiten 1 en 2 te gebruiken, dus de doelfunctie is \(D = a + b\). Het toegestane gebied:

\[
D = a + b \text{ heeft een minimum als het bijbehorende punt zo dicht mogelijk bij de oorsprong ligt. Dat is het geval in het snijpunt van de lijnen met vergelijking 11a + 5b = 400 en 19a + 15b = 1000. Herleiden en gelijkstellen geeft a = 14,3. Door invullen krijg je 5b = 400 - 11 \cdot 14,286... = 242,9 dus b = 48,6. Kwaliteit 4 moet dus bestaan uit 14,3 % van kwaliteit 1, 48,6 % van kwaliteit 2 en 37,1 % van kwaliteit 3.}
\]

27a Gebruik de beslissingsvariabelen b1 (aantal liters binnenlak volgens bereidingswijze 1), j1 (aantal liters jachtlak volgens bereidingswijze 1), b2 en j2.

De voorwaarden zijn: \(b_1 \geq 0\), \(j_1 \geq 0\), \(b_2 \geq 0\) en \(j_2 \geq 0\).

\[
b_1 + j_1 \leq 1200 \quad \text{en} \quad b_2 + j_2 \leq 1500
\]

\[
\frac{1}{2}(b_1 + j_1) + \frac{1}{2}(b_2 + j_2) \leq 1020 \quad \text{(grondstof A)}
\]

\[
\frac{1}{2}(b_1 + j_1) + \frac{1}{4}(b_2 + j_2) \leq 420 \quad \text{(grondstof B)}
\]

\[
\frac{1}{2}(b_1 + j_1) + \frac{1}{2}(b_2 + j_2) \leq 400 \quad \text{(grondstof C)}
\]

\[
b_1 + b_2 \leq 540
\]

\[
j_1 + j_2 \geq 335
\]

De doelfunctie is \(D = 10(b_1 + j_1) + 8(b_2 + j_2)\). Verder is uit de gegevens te lezen dat \(b_1 = j_1\) en \(b_2 = 2 \cdot j_2\). Daardoor is het probleem terug te brengen tot een probleem met twee beslissingsvariabelen: \(j_1\) en \(j_2\). De voorwaarden zijn:

\[
j_1 \geq 0 \quad \text{en} \quad j_2 \geq 0
\]

\[
2j_1 \leq 1200 \quad \text{dus} \quad j_1 \leq 600
\]

\[
3j_2 \leq 1500 \quad \text{dus} \quad j_2 \leq 500
\]

\[
\frac{1}{2}j_1 + \frac{1}{2}j_2 \leq 1020 \quad \text{dus} \quad j_1 + j_2 \leq 1020 \quad \text{of} \quad \frac{8}{5}j_1 + 15j_2 \leq 8160
\]

\[
\frac{1}{2}j_1 + \frac{1}{2}j_2 \leq 420 \quad \text{dus} \quad \frac{7}{8}j_1 + \frac{1}{2}j_2 \leq 420 \quad \text{of} \quad 16j_1 + 9j_2 \leq 10080
\]

\[
\frac{1}{2}j_1 + \frac{1}{2}j_2 \leq 400 \quad \text{dus} \quad \frac{7}{8}j_1 + \frac{1}{2}j_2 \leq 400 \quad \text{of} \quad 4j_1 + 9j_2 \leq 4800
\]

\[
j_1 + 2j_2 \geq 540
\]

\[
j_1 + j_2 \geq 335
\]

en de doelfunctie wordt \(D = 10(j_1 + j_2) + 8(2 \cdot j_2 + j_2) = 20j_1 + 24j_2\).

Het toegestane gebied:
Voor een minimale waarde van D komen punten dichtbij de oorsprong in aanmerking. Bereken het snijpunt van de lijnen $j_1 + 2 \cdot j_2 = 540$ en $j_1 + j_2 = 335$.

Herleiden en gelijkstellen levert $j_2 = 205$ en $j_1 = 130$.

De waarde van D in dit punt is $20 \cdot 130 + 24 \cdot 205 = 7520$.

De waarde in de “naastliggende” punten is:

In $(0, 335)$: $D = 24 \cdot 335 = 8040$

In $(540, 0)$: $D = 20 \cdot 540 = 10800$

De minimale kosten zijn 7520 euro.

Er wordt dan 130 liter jachtlak gemaakt volgens bereidingswijze 1, 205 liter jachtlak volgens bereidingswijze 2, 130 liter binnenlak volgens bereidingswijze 1 en 410 liter binnenlak volgens bereidingswijze 2.

Alternatieve aanpak

Stel er wordt a liter geproduceerd volgens bereidingswijze 1 en b liter volgens bereidingswijze 2.

Dan zijn de beperkende voorwaarden:

\[
a \geq 0 \quad \text{en} \quad b \geq 0
\]

\[
a \leq 1200 \quad \text{en} \quad b \leq 1500
\]

\[
\frac{1}{6} a + \frac{1}{5} b \leq 1020 \quad \text{of} \quad 4a + 5b \leq 8160
\]

\[
\frac{1}{2} a + \frac{1}{3} b \leq 420 \quad \text{of} \quad 8a + 3b \leq 10080
\]

\[
\frac{1}{6} a + \frac{1}{2} b \leq 400 \quad \text{of} \quad 4a + 6b \leq 9600
\]

\[
\frac{1}{3} a + \frac{1}{3} b \geq 540 \quad \text{of} \quad 3a + 4b \geq 3240
\]

\[
\frac{1}{2} a + \frac{1}{4} b \geq 335 \quad \text{of} \quad 3a + 2b \geq 2010
\]

De doelfunctie is $D = 10a + 8b$; gevraagd wordt een minimum voor D. De optimale oplossing wordt gevonden voor $a = 260$ en $b = 615$, waaruit kan worden gevonden:

Bereidingswijze 1: 130 liter binnenlak en 130 liter jachtlak.

Bereidingswijze 2: 410 liter binnenlak en 205 liter jachtlak.

bladzijde 301

28a Er is in Ayeh wekelijks 120 ton nodig, dus er moet $\frac{5}{6} \cdot 120 = 150$ ton worden verstuurd. Naar Biopa moet $\frac{2}{5} \cdot 100 = 125$ ton worden verstuurd. Er is echter geen 150 + 125 = 275 ton beschikbaar, maar slechts 260 ton.

b Als er 120 ton per vrachtauto in Ayeh moet aankomen, moet 150 ton worden verstuurd. Dit kost $150 \cdot (300 + 40) = 51000$ dollar. Per afgeleverde ton is dat $51000 \div 120 = 425$ dollar.

Als er 120 ton per vliegtuig in Ayeh moet aankomen, moet 120 ton worden verstuurd. Dit kost $120 \cdot (300 + 150) = 54000$, 40 dollar. Per afgeleverde ton is dat $54000 \div 120 = 450$, dollar.

Versturen per vliegtuig is dus per afgeleverde ton 25 dollar duurder.

Moderne wiskunde 9e editie wvo A/C deel 2 © Noordhoff Uitgevers bv
De doelfunctie is
\[K = (300+40)x + (300+60)y + (300+150)u + (300+200)v \]
maar ook geldt
\[\frac{1}{2}x + u = 120 \]
\[\frac{1}{2}y + v = 100 \]
dus
\[u = 120 - \frac{1}{2}x \]
\[v = 100 - \frac{1}{2}y \]
\[K = 340x + 360y + 450(120 - \frac{1}{2}x) + 500(100 - \frac{1}{2}y) \]
\[= 340x + 360y + 54000 - 360x + 50000 - 400y \]
\[= 10400 - 20x - 40y \]

Als \(x = 150 \) zal er 120 ton, dus de benodigde hoeveelheid, in Ayeh aankomen.
Als \(y = 125 \) zal er 100 ton in Biopa aankomen.

De voorwaarden zijn:
\[x \leq 150 \]
\[y \leq 125 \]
Maximale capaciteit vliegtuig:
\[u + v \leq 80 \]
dus
\[120 - \frac{1}{2}x + 100 - \frac{1}{2}y \leq 80 \]
waaruit volgt
\[140 \leq \frac{1}{2}(x + y) \]
dus \(x + y \geq 175 \).

Maximaal beschikbaar per week is 260 ton, dus \(x + y + u + v \leq 260 \) geeft
\[x + y + 120 - \frac{1}{2}x + 100 - \frac{1}{2}y \leq 260 \]
waaruit volgt \(\frac{1}{2}(x + y) \leq 40 \)
dus \(x + y \leq 200 \)

Het toegestane gebied:

De waarde van de doelfunctie in de vier hoekpunten is:
In \(A(150, 25) \)
\[K = 10400 - 20 \cdot 150 - 40 \cdot 25 = 6400 \]
In \(B(150, 50) \)
\[K = 10400 - 20 \cdot 150 - 40 \cdot 50 = 5400 \]
In \(C(75, 125) \)
\[K = 10400 - 20 \cdot 75 - 40 \cdot 125 = 3900 \]
In \(D(50, 125) \)
\[K = 10400 - 20 \cdot 50 - 40 \cdot 125 = 4400 \]

De kosten zijn dus minimaal als \(x = 75 \) en \(y = 125 \), waaruit volgt
\[u = 120 - \frac{1}{2} \cdot 75 = 60 \]
\[v = 100 - \frac{1}{2} \cdot 125 = 0 \]
Dat betekent dat er vanuit Hilim wordt verstuurd:
75 ton per vrachtauto en 60 ton per vliegtuig naar Ayeh, en 125 ton per vrachtauto naar Biopa.
Hoofdstuk 10 - Lineair programmeren Meer dan twee variabelen

T-2a Neem als beslissingsvariabelen:
\[a_1 = \text{aantal ton van A naar } H_1 \text{ en } a_2 = \text{aantal ton van A naar } H_2 \]
\[b_1 = \text{aantal ton van B naar } H_1 \text{ en } b_2 = \text{aantal ton van B naar } H_2 \]
\[c_1 = \text{aantal ton van C naar } H_1 \text{ en } c_2 = \text{aantal ton van C naar } H_2 \]
De doelfunctie is dan
\[TK = 9a_1 + 10b_1 + 9,5c_1 + 10,5a_2 + 11b_2 + 11,5c_2. \]

b De voorwaarden:
\[a_1 + a_2 \leq 22 \]
\[b_1 + b_2 \leq 12 \]
\[c_1 + c_2 \leq 20 \]
\[a_1 + b_1 + c_1 = 20 \]
\[a_2 + b_2 + c_2 = 30 \]

c In dit geval geldt:
\[TK = 9 \cdot 4 + 10 \cdot 0 + 9,5 \cdot 16 + 10,5 \cdot 18 + 11 \cdot 12 + 11,5 \cdot 0 \text{ dus } TK = 36 + 152 + 189 + 132 = 509 \text{ euro.} \]

d In dit geval levert A 22 ton en B 12 ton, dus die twee distributiecentra raken door hun voorraad heen. C levert 16 ton en heeft dus nog vlees over.

bladzijde 305

T-3a Stel er wordt \(x \) miljoen euro belegd in aandelen, \(y \) miljoen in obligaties en \(z \) miljoen in onroerend goed.
Daarbij geldt: \(x + y + z = 30 \text{ dus } z = 30 - x - y. \)
Verder gelden de voorwaarden:
\[x \geq 3 \text{ en } y \geq 3 \]
\[z \geq 3 \text{ dus } 30 - x - y \geq 3 \text{ of } x + y \leq 27 \]
\[x + y \geq 2 \text{ dus } x + y \geq 15 \]
\[x \leq 2y \]
Het toegestane gebied:

De doelfunctie is
\[D = 0,08x + 0,07y + 0,09z = 0,08x + 0,07y + 0,09(30 - x - y) \]
\[= 0,08x + 0,07y + 2,7 - 0,09x - 0,09y = 2,7 - 0,01x - 0,02y \]
De hoekpunten van het toelaatbare gebied zijn:
Uit \(x = 3 \text{ en } x + y = 15 \text{ volgt } A(3,12). \)
Uit \(x = 3 \text{ en } x + y = 27 \text{ volgt } D(3,24). \)
Uit \(x = 2y \text{ en } x + y = 27 \text{ volgt } C(18,9). \)
Uit \(x = 2y \text{ en } x + y = 15 \text{ volgt } B(10,5). \)
De waarde van W in de hoekpunten is:

In $A(3, 9)$: $D = 2,7 - 0,01 \cdot 3 - 0,02 \cdot 9 = 2,49$

In $B(10, 5)$: $D = 2,7 - 0,01 \cdot 10 - 0,02 \cdot 5 = 2,5$

In $C(18, 9)$: $D = 2,7 - 0,01 \cdot 18 - 0,02 \cdot 9 = 2,34$

In $D(3, 24)$: $D = 2,7 - 0,01 \cdot 3 - 0,02 \cdot 24 = 2,19$

Het maximum wordt bereikt voor $x = 10$, $y = 5$ en $z = 15$. Dus 10 miljoen euro beleggen in aandelen, 5 miljoen euro in obligaties en 15 miljoen euro in onroerend goed.

b De maximale opbrengst is 2,5 miljoen euro.

T-4a x is het bedrag in aandelen, y het bedrag in obligaties en z is het bedrag in onroerend goed. Zie de oplossing van opdracht T-3.

b In de doelfunctie wordt 0,08 veranderd in 0,04, het resultaat met VU-Grafiek wordt:

De verdeling van het te investeren bedrag verandert in 3 miljoen in aandelen, 12 miljoen in obligaties en 15 miljoen in onroerend goed.

c De maximale opbrengst is ook nu 2,5 miljoen euro.

d Voeg nu de voorwaarde $z = 6$ toe. Het resultaat met VU-Grafiek wordt:

De opbrengst is nu 2,13 miljoen euro, dat is 0,37 miljoen euro minder.
e Verander het totale bedrag in 31 miljoen euro. Het resultaat met VU-Grafiek wordt:

\[\text{Deelfunctie} \]

<table>
<thead>
<tr>
<th>Optrekking:</th>
<th>$0.04x + 0.07y + 0.09z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voorwaarden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(totaal)</td>
<td>$x + y + z = 31$</td>
</tr>
<tr>
<td>(aandelen)</td>
<td>$x \geq 3$</td>
</tr>
<tr>
<td>(obligaties)</td>
<td>$y \geq 3$</td>
</tr>
<tr>
<td>(onroerend goed)</td>
<td>$z \geq 3$</td>
</tr>
<tr>
<td>(heln)</td>
<td>$x + y + 0.5(x + y + z)$</td>
</tr>
<tr>
<td>(aand.)</td>
<td>$x = 2y$</td>
</tr>
<tr>
<td>(onr goed)</td>
<td>$z = 6$</td>
</tr>
</tbody>
</table>

Ten opzichte van de vorige vraag is de opbrengst 0,07 miljoen euro hoger.

T-5 Neem aan dat er x zakken worden vervoerd van Mtukwao naar Dar es Salaam, y zakken naar Kilwa Masoko en z zakken naar Lindi. Daarbij geldt $x + y + z = 200$ dus $z = 200 - x - y$.

Opbrengst $120x + 120 - 0.6y + 120 - 0.8z = 120x + 72y + 96z$

Transport $13x + 1y + 10z$

De doelfunctie W is

\[W = 107x + 71y + 86z = 107x + 71y + 86(200 - x - y) \]
\[= 107x + 71y + 17200 - 86x - 86y = 17200 + 21x - 15y \]

De voorwaarden zijn:

- $x \geq 0$ en $y \geq 0$
- $z \geq 0$ dus $200 - x - y \geq 3$ dus $x + y \leq 200$
- $13x + y + 10(200 - x - y) = 13x + y + 2000 - 10x - 10y = 3x - 9y + 2000 \leq 1700$ dus $3x - 9y \leq -300$ of $3y - x \geq 100$

Het toegestane gebied:

De hoekpunten:
- $x = 0$ en $x + y = 200$ geeft punt $(0, 200)$
- $3y - x = 100$ en $x = 0$ geeft punt $(0, 33\frac{1}{3})$
- $3y - x = 100$ en $x + y = 200$ geeft door herschrijven en gelijkstellen $y = 75$ en dus punt $(125, 75)$

De waarde van de doelfunctie is:
- In $(0, 200)$ $W = 17200 - 15 \cdot 200 = 14200$
- In $(0, 33\frac{1}{3})$ $W = 17200 - 15 \cdot 33\frac{1}{3} = 16700$
- In $(125, 75)$ $W = 17200 + 21 \cdot 125 - 15 \cdot 75 = 18700$

De winst is maximaal bij 125 zakken naar Dar es Salaam en 75 zakken naar Kilwa Masoko. De winst is in dat geval 18700 shilling.